USB to UART Bridge IC # HT42B534-x Revision: V1.30 Date: June 09, 2025 www.holtek.com # **Table of Contents** | Features | _ | |---|----| | General Description | 3 | | USB Bridge IC Naming Rules | 4 | | Revision History | 4 | | Selection Table | 4 | | Block Diagram | 4 | | Pin Assignment | 5 | | Pin Description | 5 | | Absolute Maximum Ratings | | | D.C Characteristics | 6 | | A.C Characteristics | 7 | | Power-on Reset Characteristics | 7 | | USB Interface | 8 | | Power Planes | 8 | | USB Interface Operation | 8 | | USB VID and PID Configuration | 8 | | UART Interface | 9 | | UART External Pin | | | UART Data Transfer Scheme | 9 | | Baud Rate Generator | | | UART Power Down and Wake-up | | | Application Program Demo | 10 | | Holtek USB Bridge Program | | | Program Update Block | | | USB to UART Block | 12 | | Application Circuits | 13 | | Dual Power Product Application Circuits | | | Package Information | 14 | | 8-pin SOP (150mil) Outline Dimensions | 15 | | 10-pin SOP (150mil) Outline Dimensions | | | 16-pin NSOP (150mil) Outline Dimensions | 17 | #### **Features** - Operating Voltage (V_{DD}): 3.3V~5.5V - UART pin Voltage (V_{DDIO}): 1.8V~V_{DD} (Less than V_{DD} voltage) - Power down and wake-up functions to reduce power consumption - Fully integrated 12MHz oscillator with 0.25% accuracy for all USB modes which requires no external components - · USB interface - USB 2.0 Full Speed compatible - Implements USB protocol composite device: - Communication Device Class (CDC) for communications and configuration - Human Interface Device (HID) for user configure USB VID, PID and device description strings - Internal 1.5kΩ pull-high resistor on D+ pin - Fully-duplex Universal Asynchronous Receiver and Transmitter Interface UART - Supports Baud Rate up to 3Mbps - Supports maximum 128 bytes transmit buffer and 128 bytes receive buffer - UART Data formats supported: - Data bits: 8 - Stop bits: 1 or 2 - Parity: odd, even, no parity - Supports RTS/CTS pins for auto flow control - Supports RX pin resume signal to request a remote wake-up - Supports automatic resynchronization function - Supports standard Windows® drivers for Virtual Com Port (VCP): Windows XP (SP2), Vista, Widows 7 & Windows 8 (only an INF file is required), Windows 10 - Supports Android 4.0 or later version and Mac OS X - Integrated 256 bytes EEPROM for user memory - Package types: 8-pin SOP, 10-pin SOP, 16-pin NSOP ### **General Description** The HT42B534-x device is a high performance USB to UART bridge controller with fully integrated USB and UART interface functions, designed for applications that communicate with various types of UART. The device includes a USB 2.0 full speed compatible interface which is used for PC communication. The device also includes a fully integrated high speed oscillator which is used as clock source for the USB and UART baud rate generator. The baud rate generator can support up to 3Mbps of baud rate for the UART interface. ### **USB Bridge IC Naming Rules** ### **Revision History** | Version | Date | Description | | | | |------------|------------|--|--|--|--| | HT42B534-1 | 2016/12/09 | First version | | | | | HT42B534-2 | 2019/03/26 | Add an automatic resynchronization function to achieve the reconnection for successful data transmission after power-on. | | | | #### **Selection Table** | Part No. | Description | V _{DD} | USB | Virtual
COM | HID | FIFO/Buffer | Interface
Data Rate | I/O
V _{DD} | Package | | | | | | |------------|--------------------------------|-----------------|------------|----------------|----------|------------------------------|--------------------------------|------------------------|---------|-------------------|--------------------------------|------------|---|--------| | HT42B532-x | USB to I ² C Bridge | | | 1 | _ | TX: 62 bytes
RX: 62 bytes | Up to 400kHz | √ | 8SOP | | | | | | | HT42B533-x | USB to SPI Bridge | 3.3V~ E | 3.3V~ | 3.3V~ | 3.3V~ | F 11 0 1 | iV~ | 3.3V~ | 1 | _ | TX: 128 bytes
RX: 128 bytes | Up to 8MHz | √ | 16NSOP | | HT42B534-x | USB to UART Bridge | 5.5V | Full-Speed | .5V Tull-Speed | 1 | _ | TX: 128 bytes
RX: 128 bytes | Up to 3Mbps
Baud | √ | 8/10SOP
16NSOP | | | | | | HT42B564-x | USB (HID) to UART
Bridge | | | _ | V | TX: 32 bytes
RX: 32 bytes | Up to 115.2kbps
Baud | V | 10SOP | | | | | | ### **Block Diagram** Rev. 1.30 4 June 09, 2025 ### **Pin Assignment** | Package Type | Marking | |--------------|------------| | 8SOP | HT42B534-x | | 10SOP | HT42B534-x | | 16NSOP | HT42B534-x | Note: x stands for version number. ### **Pin Description** As the Pin Description table applies to the package type with the most pins, not all of the listed pins may be present on package types with smaller numbers of pins. | Pin Name | Туре | Description | |----------|------|---| | D+ | I/O | USB D+ Line | | D- | I/O | USB D- Line | | TX | 0 | Asynchronous data output (UART Transmit) | | RX | I | Asynchronous data input (UART Receive) | | CTS | I | Clear To Send control input, active low | | RTS | 0 | Ready to Send control output, active low | | DSR | I | Data Set Ready control input, active low | | DTR | 0 | Data Terminal Ready control output, active low | | DCD | I | Data Carrier Detect control input, active low | | RI | I | Ring Indicator control input, active low | | LED | 0 | TX/RX signal LED indication, active low | | UDET | I | USB plug in/out detect pin, only for 10-pin SOP package | | V33O | 0 | 3.3V regulator output | | VDDIO | PWR | Positive power supply for TX/RX/CTS/RTS/DSR/DTR/DCD/RI pins | | VDD | PWR | Positive power supply, USB bus power | | GND | PWR | Negative power supply, ground | ### **Absolute Maximum Ratings** | Supply Voltage | V_{SS} =0.3V to V_{SS} +6.0V | |-------------------------|----------------------------------| | Input Voltage | V_{SS} =0.3V to V_{DD} +0.3V | | Storage Temperature | | | Operating Temperature | 40°C to 85°C | | I _{OH} Total | -80mA | | I _{OL} Total | 80mA | | Total Power Dissipation | 500mW | Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to this device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect devices reliability. ### **D.C Characteristics** Ta=25°C | Comple of | Downworton | | Test Conditions | Min | Тур. | Max. | 1114 | |-------------------|---|-----------------|---|----------------------|------|----------------------|------| | Symbol | Parameter | V _{DD} | Conditions | Min. | | | Unit | | V_{DD} | Operating Voltage | _ | _ | 3.3 | _ | 5.5 | V | | V _{DDIO} | UART Pins VDDIO Input Voltage | _ | _ | 1.8 | _ | V _{DD} | V | | I _{DD} | Operating Current | 5V | No load | _ | 16 | 20 | mA | | Isus | Suspend Current (USB) | 5V | Suspend mode, No load, USB on, other peripherals off | _ | 360 | 450 | μA | | I _{STB} | Standby Current (Non-USB) for 10-pin SOP package only | 3.3V | Standby mode, No load, USB
Plug-out, other peripherals off,
VDD power is from VDDIO | _ | 0.1 | 1.0 | μA | | V _{IL} | Input Pins Input Low Voltage | _ | _ | 0 | _ | 0.2V _{DDIO} | V | | V _{IH} | Input Pins Input High Voltage | _ | _ | 0.8V _{DDIO} | _ | V _{DDIO} | V | | loi | I/O Pins Sink Current | 3.3V | \\\.\.\.\.\.\\\\\\\\\\\\\\\\\\\\\\\\\\ | 4 | 8 | _ | mA | | IOL | 1/O PINS SINK CUITERI | 5V | $V_{OL} = 0.1 V_{DDIO}, V_{DDIO} = V_{DD}$ | 10 | 20 | _ | mA | | Іон | I/O Pins Source Current | 3.3V | -V _{OH} = 0.9V _{DDIO} , V _{DDIO} =V _{DD} | -2 | -4 | _ | mA | | IOH | 1/O Pilis Source Current | 5V | | -5 | -10 | _ | mA | | Rph | I/O Dina Dull high Booistance | 3.3V | V _{DDIO} =V _{DD} | 20 | 60 | 100 | kΩ | | TXPH . | I/O Pins Pull-high Resistance | 5V | V _{DDIO} =V _{DD} | 10 | 30 | 50 | kΩ | | | Innut Lookage Current | 3.3V | $V_{IN} = V_{DD}$ or $V_{IN} = V_{SS}$, | _ | _ | ±1 | μΑ | | I _{LEAK} | LEAK Input Leakage Current | | V _{DDIO} =V _{DD} | _ | _ | ±1 | μΑ | | V _{V33O} | 3.3V Regulator Output Voltage | 5V | I _{V330} = 70mA | 3.0 | 3.3 | 3.6 | V | | R _{UDP1} | Pull-high Resistance between D+ and V33O | 3.3V | _ | -5% | 1.5 | +5% | kΩ | Rev. 1.30 6 June 09, 2025 ### **A.C Characteristics** Ta=25°C | Cumbal | Parameter | Т | Min. | Turn | Max. | Unit | | |-------------------|-----------------------------------|------------------------|-------------------------------------|---------|------|--------|-------------------| | Symbol | Parameter | V _{DD} | Condition | IVIIII. | Тур. | IVIAX. | Ullit | | f _{HIRC} | High Speed Internal RC Oscillator | 3.3V~5.5V | USB mode | -0.25% | 12 | +0.25% | MHz | | t _{SST} | System Start-up Timer Period | _ | RX pin Wake-up from power down mode | 16 | _ | _ | t _{HIRC} | | t _{RSTD} | System Reset Delay Time | _ | Power-on reset | 25 | 50 | 100 | ms | ### **Power-on Reset Characteristics** Ta=25°C | Symbol | Parameter | | est Conditions | Min. | Typ. | Max. | Unit | |------------------|---|------------------------|----------------|---------|------|--------|-------| | Symbol | Faranietei | V _{DD} | Conditions | IVIIII. | Typ. | IVIAX. | Ullit | | V _{POR} | V _{DD} Start Voltage to Ensure Power-on Reset | _ | _ | _ | _ | 100 | mV | | RRPOR | V _{DD} Rising Rate to Ensure Power-on Reset | _ | _ | 0.035 | _ | _ | V/ms | | t _{POR} | Minimum Time for V_{DD} Stays at V_{POR} to Ensure Power-on Reset | _ | _ | 1 | _ | _ | ms | #### **USB** Interface The USB interface, being USB 2.0 full-speed compatible, is a 4-wire serial bus that allows communication between a host device and up to 127 peripheral devices on the same bus. A token based protocol method is used by the host device for communication control. Other advantages of the USB bus include live plugging and unplugging and dynamic device configuration. As the complexity of USB data protocol does not permit comprehensive USB operation information to be provided in this datasheet, the reader should therefore consult other external information for a detailed USB understanding. #### **Power Planes** There are two power planes for the device and they are the USB bus power input (VDD) and 3.3V regulator output (V33O). For the USB SIE VDD will supply all circuits related to USB SIE and be sourced from pin "VDD". Once the USB is removed from the USB and there is no power in the USB BUS, the USB SIE circuit is no longer operational. #### **USB Interface Operation** To communicate with an external USB host, the internal USB module has external pins known as D+ and D- along with the 3.3V regulator output V33O. A Serial Interface Engine (SIE) decodes the incoming USB data stream and transfers it to the correct endpoint buffer memory known as the FIFO. The USB module has 4 endpoints, EP0 \sim EP3. The endpoint 0 supports the Control transfer while the endpoint 1 \sim endpoint 3 support the Interrupt or Bulk transfer. The HT42B534-x Bridge IC supports the USB Communication Device Class (CDC) for communications and configuration. | Endpoint | Transfer Type | | | | |----------|---------------|--|--|--| | 0 | Control | | | | | 1 | Interrupt | | | | | 2 | Bulk Out | | | | | 3 | Bulk In | | | | **USB Endpoint Transfer Type** If there is no signal on the USB bus for over 3ms, the USB device will enter the suspend mode. The device enters the suspend state to meet the requirements of the USB suspend current specification. When the resume signal is asserted by the USB host, the device will be woken up and leave the suspend mode. As the USB device has a remote wake-up function, the USB device can wake up the USB host by sending a remote wake-up pulse. Once the USB host receives a remote wake-up signal from the USB device, the host will send a resume signal to device. #### **USB VID and PID Configuration** The device has configured the default Vendor ID (VID:0x04D9), Product ID (PID:0xB534) and product description strings of "USB to UART Bridge". The user can update the Vendor ID, Product ID, product description strings and remote wake-up setting using their application program. This device has been configured to the default USB configuration data as shown in the following table. | Parameter | Value (hex) | |----------------------|--------------------| | USB Vendor ID (VID) | 0x04D9 | | USB Product ID (PID) | 0xB534 | | Remote wake-up | Default disable | | Manufacturer Name | Holtek | | Product Description | USB to UART Bridge | | Serial Number | 0000 | Rev. 1.30 8 June 09, 2025 #### **UART Interface** The HT42B534-x contains an integrated full-duplex asynchronous serial communications UART interface that enables communication with external devices that contain a serial interface. The UART function has many features and can transmit and receive data serially by transferring a frame of data with eight data bits per transmission as well as being able to detect errors when the data is overwritten or incorrectly framed. The UART function possesses its own internal interrupt which can be used to indicate when a reception occurs or when a transmission terminates. The integrated UART function contains the following features: - Full-duplex, asynchronous communication - 8 bits character length - Even, odd or no parity options - One or two stop bits - · Baud rate generator with prescaler - 128-byte Deep FIFO Transmit Data Buffer - 128-byte Deep FIFO Receive Data Buffer - RX pin wake-up function - UART pins power supply by VDDIO pin #### **UART External Pin** To communicate with an external serial interface, the internal UART has two external pins known as TX and RX. The TX and RX pins are the UART transmitter and receiver pins respectively. #### **UART Data Transfer Scheme** The data will be transferred to the Transmit Shift Register from where it will be shifted out, LSB first, onto the TX pin at a rate controlled by the Baud Rate Generator. Data to be received by the UART is accepted on the external RX pin, from where it is shifted in, LSB first, to the Receiver Shift Register at a rate controlled by the Baud Rate Generator. The UART interface provides a 128-byte deep FIFO transmit data buffer and a 128-byte deep FIFO receive data buffer for applications. For data transfer, the UART function utilises a non-return-to-zero, more commonly known as NRZ, format. This is composed of one start bit, eight data bits and one or two stop bits. Parity is supported by the UART hardware and can be setup to be even, odd or no parity. For the most common data format, 8 data bits along with no parity and one stop bit, denoted as 8, N, 1, is used as the default setting, which is the setting at power-on. The following diagram shows the transmit and receive waveforms for an 8-bit data format. #### **Baud Rate Generator** To setup the speed of the serial data communication, the UART function contains its own dedicated baud rate generator. The default UART baud rate is 9600bps and it can be controlled by the application program. The baud rate and miss rate table: | Baud Rate | Real Rate | Miss Rate (%) | |-----------|-------------|---------------| | 2400 | 2403.846154 | 0.16 | | 4800 | 4807.692308 | 0.16 | | 9600 | 9603.841537 | 0.04 | | 19200 | 19207.68307 | 0.04 | | 38400 | 38461.53846 | 0.16 | | 57600 | 57692.30769 | 0.16 | | 115200 | 115384.6154 | 0.16 | | 230400 | 230769.2308 | 0.16 | | 460800 | 457142.8571 | 0.79 | | 1700000 | 1714285.714 | 0.84 | | 2300000 | 2285714.286 | 0.62 | | 3400000 | 3428571.429 | 0.84 | #### **UART Power Down and Wake-up** If the USB host sends a suspend signal to the HT42B534-x USB device, it will enter the suspend mode. It is recommended to ensure that the UART data transmission or reception has been finished before the device enters the suspend mode. The UART function contains a receiver RX pin wake-up function. A falling edge on the RX pin will wake up the device from the suspend mode. ### **Application Program Demo** #### Holtek USB Bridge Program Holtek provides an application program to setup the HT42B534-x Bridge IC for USB to UART data communication. The application program carries the name "Holtek USB Bridge Program". The application program function contains two blocks, the first block is for the customer vendor ID, product ID and product information upgrate, the second block is for the USB to UART application settings. The USB to UART setting block can be used to configure the baud rate, data, stop bits, parity, flow control and data transmit/receive demo. The main figure for the program update is as follows: Rev. 1.30 June 09, 2025 #### **Program Update Block** On the program update block page, first open the Holtek VID/PID Bridge IC. If the USB has been plugged into the host PC, a new window will pop up showing USB open success. The user can update the customer VID, PID, manufacturer name, product description, serial number and 256 bytes of user memory as well as set the UART bridge device hardware flow control and remote wake-up functions. A user memory area, where no special data has been stored, can be used by the user for self-definition. The following table shows the configuration descriptor length. | Parameter | Length | |---------------------|----------------------------| | USB Vendor ID(VID) | 1 Word (hex) | | USB Product ID(PID) | 1 Word (hex) | | Manufacturer Name | Max. support 16 characters | | Product Description | Max. support 32 characters | | Serial Number | Max. support 4 words | The main figure of the program update block is as follows: #### Configuration operating steps: - Step1: Open the Holtek Bridge VID/PID device. - Step2: Change custom device or go to USB to UART page. - Setp3: Input VID/PID and product strings (If the user needs to change custom device). - Step4: Hardware flow control and remote wakeup setting. - Step5: Import user memory (user optional). - Step6: Save or open user memory data (user optional). - Step7: Download or upload VID/PID/Product strings and the user memory data. #### **USB to UART Block** The USB to UART setting block is used to configure the baud rate, data, stop bits, parity, flow control and data transmit/receive demo. This page can also control the output RTS and DTR toggle pins, CTS, RI, DSR and DCD pins input status. The figure for the USB to UART is as follows: USB to UART Bridge operating steps: - Step1: Select USB to UART page. - Step2: Check that device is HT42B534-x. - Setp3: Select COM port number. - Step4: Select baud rate. - Step5: Select one or two stop bits. - · Step6: Select parity. - Step7: Select flow control function. - Step8: Open the selections. - Step9: Input the data to be transmitted. - Step10: Send data. - Step11: Receive data. - Step12: Toggle RTS/ DTR pins. - Step13: Input CTS/RI/DSR/DCD pins status. Rev. 1.30 12 June 09, 2025 ### **Application Circuits** #### **Dual Power Product Application Circuits** Note: 1. Design note: 10-SOP package only for two power application, the V_{CC} power must be below V_{DD} power. (The V_{CC} power can be from the Li-battery). 2. The UDET pin can used for detect the USB plug-in for transfer data, detect the USB plug-out for entry energy saving mode. ### **Package Information** Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>. Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page. - Package Information (include Outline Dimensions, Product Tape and Reel Specifications) - The Operation Instruction of Packing Materials - Carton information Rev. 1.30 June 09, 2025 ### 8-pin SOP (150mil) Outline Dimensions | Symbol | Dimensions in inch | | | |--------|--------------------|------|-------| | | Min. | Nom. | Max. | | A | 0.236 BSC | | | | В | 0.154 BSC | | | | С | 0.012 | _ | 0.020 | | C' | 0.193 BSC | | | | D | _ | _ | 0.069 | | E | 0.050 BSC | | | | F | 0.004 | _ | 0.010 | | G | 0.016 | _ | 0.050 | | Н | 0.004 | _ | 0.010 | | α | 0° | _ | 8° | | Symbol | Dimensions in mm | | | |--------|------------------|----------|------| | Symbol | Min. | Nom. | Max. | | A | | 6.00 BSC | | | В | 3.90 BSC | | | | С | 0.31 | _ | 0.51 | | C' | 4.90 BSC | | | | D | _ | _ | 1.75 | | E | | 1.27 BSC | | | F | 0.10 | _ | 0.25 | | G | 0.40 | _ | 1.27 | | Н | 0.10 | _ | 0.25 | | α | 0° | _ | 8° | ### 10-pin SOP (150mil) Outline Dimensions | Symbol | Dimensions in inch | | | |--------|--------------------|-----------|-------| | | Min. | Nom. | Max. | | A | | 0.236 BSC | | | В | 0.154 BSC | | | | С | 0.012 | _ | 0.018 | | C' | 0.193 BSC | | | | D | _ | _ | 0.069 | | E | 0.039 BSC | | | | F | 0.004 | _ | 0.010 | | G | 0.016 | _ | 0.050 | | Н | 0.004 | _ | 0.010 | | α | 0° | _ | 8° | | Cumbal | Dimensions in mm | | | |--------|------------------|------|------| | Symbol | Min. | Nom. | Max. | | A | 6.00 BSC | | | | В | 3.90 BSC | | | | С | 0.30 | _ | 0.45 | | C' | 4.90 BSC | | | | D | _ | _ | 1.75 | | E | 1.00 BSC | | | | F | 0.10 | _ | 0.25 | | G | 0.40 | _ | 1.27 | | Н | 0.10 | _ | 0.25 | | α | 0° | _ | 8° | Rev. 1.30 June 09, 2025 ### 16-pin NSOP (150mil) Outline Dimensions | Symbol | Dimensions in inch | | | |--------|--------------------|-----------|-------| | | Min. | Nom. | Max. | | A | | 0.236 BSC | | | В | 0.154 BSC | | | | С | 0.012 | _ | 0.020 | | C' | 0.390 BSC | | | | D | _ | _ | 0.069 | | E | 0.050 BSC | | | | F | 0.004 | _ | 0.010 | | G | 0.016 | _ | 0.050 | | Н | 0.004 | _ | 0.010 | | α | 0° | _ | 8° | | Symbol | Dimensions in mm | | | |--------|------------------|----------|------| | | Min. | Nom. | Max. | | A | | 6.00 BSC | | | В | 3.90 BSC | | | | С | 0.31 | _ | 0.51 | | C' | 9.90 BSC | | | | D | _ | _ | 1.75 | | E | 1.27 BSC | | | | F | 0.10 | _ | 0.25 | | G | 0.40 | _ | 1.27 | | Н | 0.10 | _ | 0.25 | | α | 0° | _ | 8° | Copyright® 2025 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved. The information provided in this document has been produced with reasonable care and attention before publication, however, HOLTEK does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. HOLTEK disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and non-infringement of any thirdparty's rights. HOLTEK disclaims all liability arising from the information and its application. In addition, HOLTEK does not recommend the use of HOLTEK's products where there is a risk of personal hazard due to malfunction or other reasons. HOLTEK hereby declares that it does not authorise the use of these products in life-saving, life-sustaining or safety critical components. Any use of HOLTEK's products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold HOLTEK harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of HOLTEK (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us. Rev. 1.30 18 June 09, 2025