HT8 MCU Timer Module Application Note (3) – Using the TM Timer Mode to implement a Software UART Function

D/N: AN0446E

Introduction

The Holtek HT8 MCUs provide various types of Time Modules, such as the Compact Type TM, Standard Type TM and Periodic Type TM. In actual product applications, communication with peripheral devices is often implemented using the fully integrated SPI, I²C and UART interface functions. This application note shows how to use the Timer Module STM Timer/Counter Mode to implement UART transmitter and receiver functions using software control. This specific application shows that MCUs that do not have an integrated UART function can also implement UART transmitter and receiver functions by using their TM functions.

Operating Principle

Standard Type TM Structure Description

The Standard Type TM has an external input pin and one or two external output pins and can run in five operating modes which are Compare Match Output, Timer/Event Counter, Capture Input, Single Pulse Output and PWM Output modes.

The core of the Standard TM is composed of a count-up counter, a Comparator A and a Comparator P. The count-up counter is driven by an internal or external TCKn pin clock source. The Comparator A and Comparator P will compare the counter value with the CCRA and CCRP registers respectively. The TPn output signal state is determined by the operating mode. Taking the following figure as an example, the counter value is compared with the 16-bit CCRA register and the high 8-bit CCRP register. The counter will be cleared automatically by a counter overflow, changing the TnON bit from low to high or by a compare match with one of its associated comparators.
Timer/Counter Mode Description

The Timer/Counter mode is the most widely used mode. To select this mode, bits TnM1 and TnM0 should be set to 11 respectively. When operating in this mode timing values can be determined using the TnCCLR bit. When a compare match occurs from Comparator A with the TnCCLR bit set high or when a compare match occurs from the Comparator P with the TnCCLR bit cleared low, the counter will be cleared after which it will resume counting. At this point, the comparator A or comparator P interrupt request flag, TnAF or TnPF, will be set. Whether the interval time is reached or not can be checked by two methods which are polling the interrupt flags and the related interrupts.

Note: The TM interrupt request flags, TnAF and TnPF, have to be cleared by the application program.

Asynchronous Serial Port Operating Principle

Asynchronous communication transmits data in a frame format which is composed of characters. The time interval between two characters is not fixed, however each bit within a character is transmitted at a fixed time interval, which means that the time interval between characters is not necessarily an integral multiples of bit intervals, while the time interval between bits in the same character is an integral multiples of bit intervals.
The communication format is shown below.

```
<table>
<thead>
<tr>
<th>Idle</th>
<th>Start Bit</th>
<th>8 bits Data</th>
<th>Parity Bit</th>
<th>Stop Bit</th>
<th>Idle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSB</td>
<td></td>
<td></td>
<td></td>
<td>MSB</td>
<td></td>
</tr>
</tbody>
</table>
```

Fig. 2 Serial Port Communication Format

Note: MSB is the most significant bit and LSB is the least significant bit.

Application Circuit

The HT66F0185 MCU is used to implement the circuit in the above figure. The TX pin is used as the serial port transmitter pin and the RX pin is used as the serial port receiver pin. RX and TX can be changed to any location. Users can define RXD and TXD to the actual pins by modifying the stm.h file.

Software Description

This application uses the HT66F0185 to describe how to use the STM to simulate serial ports.

- **T** : Timer interval time; **Tbit** : Time for sending a bit
- Relationship between them: 4T = Tbit
- **Baud Rate** : Baudrate = 1/Tbit

The simulation serial port transmits the data to the variable buffer first, and then transmits the buffer data bit out one by one every Tbit seconds.
When the simulation serial port is receiving data the MCU will enter the interrupt program every T seconds to detect whether the RXD pin is at a low level or not. This is to detect whether the start bit has been received or not. If the RXD pin is low, a middle sampling method can be used to receive a data bit one every Tbit seconds. The data bits can then be stored in the input variables.

As an example, use the HT66F0185 STM to setup T=52µs and use a baud rate of 4800. The register setup steps are as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Operating Content</th>
<th>Register</th>
<th>Bit</th>
<th>Function Description</th>
<th>Software Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Setup clock source</td>
<td>TM0C0</td>
<td>T0CK[2:0]=001=fSYS=8M</td>
<td>Select STM clock source</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Setup operating mode</td>
<td>TM0C1</td>
<td>T0M[1:0]=11= Timer/Counter Mode</td>
<td>Select STM operating mode</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Setup counter clear condition</td>
<td>T0CCLR</td>
<td>0: Comparator P match 1: Comparator A match</td>
<td>Select STM counter clear condition</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Setup CCRA register value</td>
<td>TM0AH TM0AL</td>
<td>All bits</td>
<td>Write the timer period</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Setup count control bit</td>
<td>TM0C0</td>
<td>0: Off 1: On</td>
<td>Enable STM counter to run</td>
<td></td>
</tr>
</tbody>
</table>

As an example, use the HT66F0185 STM to setup T=52µs and use a baud rate of 4800. The register setup steps are as follows:
Software Design Flowchart

Start

Send_flag==1?

Yes

Send a bit

No

Rxd==0?

Yes

Receive a bit

No

End

Fig. 4 STM Interrupt Service Subroutine Flowchart

Start

Setup the RX as an input and TX as an output

Configure STM registers

Enable the multi-function interrupt 0 control bit

Enable the Comparator A interrupt control bit

Loop jump

Fig. 5 Main Program Flowchart
"U" Type Character Output Waveform

Program Example

C Language Example

Program Example Instruction

- `<stm.h>`: Used to modify the simulated I/O pins and to change the baud rate.
- `void Init_Timer_Uart();`:
 Serial port simulation initialisation function, can also be used after initialisation.
- `uchar Send_Byte(uchar output);`:
 This parameter is used for the transmitted data. If the data is successfully transmitted, return a 1 value. If not return a 0 value.
- This program uses input variables to receive data. These variables can be processed at the location that the ISR function has marked.

Conclusion

This application note should assist users to understand how to use the Standard TM to simulate serial ports.
Reference Files

Reference File: HT66F0185 DataSheet.

For more information, refer to the Holtek official website http://www.holtek.com.

Versions and Modification Information

<table>
<thead>
<tr>
<th>Date</th>
<th>Author</th>
<th>Issue Release and Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016.07.10</td>
<td>鍾傳猛(Mounch)</td>
<td>First Version</td>
</tr>
</tbody>
</table>

Disclaimer

All information, trademarks, logos, graphics, videos, audio clips, links and other items appearing on this website (‘Information’) are for reference only and is subject to change at any time without prior notice and at the discretion of Holtek Semiconductor Inc. (hereinafter ‘Holtek’, ‘the company’, ‘us’, ‘we’ or ‘our’). Whilst Holtek endeavors to ensure the accuracy of the Information on this website, no express or implied warranty is given by Holtek to the accuracy of the Information. Holtek shall bear no responsibility for any incorrectness or leakage.

Holtek shall not be liable for any damages (including but not limited to computer virus, system problems or data loss) whatsoever arising in using or in connection with the use of this website by any party. There may be links in this area, which allow you to visit the websites of other companies. These websites are not controlled by Holtek. Holtek will bear no responsibility and no guarantee to whatsoever Information displayed at such sites. Hyperlinks to other websites are at your own risk.

Limitation of Liability

In any case, the Company has no need to take responsibility for any loss or damage caused when anyone visits the website directly or indirectly and uses the contents, information or service on the website.

Governing Law

This disclaimer is subjected to the laws of the Republic of China and under the jurisdiction of the Court of the Republic of China.

Update of Disclaimer

Holtek reserves the right to update the Disclaimer at any time with or without prior notice, all changes are effective immediately upon posting to the website.